
Opto-Thermal Mathematical Modelling and Inverse Depth 
Profiling Using Genetic Algorithm 

Yingxin Cui, Peng Xiao, Robert E. Imhof 

School of Engineering, South Bank University, 103, Borough Road, London, SE13 0AA, 
UK 

Abstract 

The OTTER non-invasive measurement of water concentration depth profiles in human 
skin is important for development an understanding of its barrier function. In this paper, 
we present a new inverse method for analysing opto-thermal data to yield optical depth 
profiles, which is based on a new multi-layer mathematical model designed for opto-
thermal skin data analysis. This has been combined with a novel inverse analysis 
technique using a Genetic Algorithm. The performance of the new approach is tested on 
both simulated data and in-vivo experimental skin data. We present the theoretical 
background and compare the analysis of typical measurements using the new approach 
with conventional analyses. 

 

1. Introduction 

Optothermal transient emission radiometry (OTTER) is a non-destructive, remote 
sensing measurement technology, which has been proven potentially attractive for 
biomedical studies1. Our previous work has shown that the data from OTTER 
measurements is information rich, and one meaningful characteristic we especially 
concern about is the sample’s optical depth profile, which often reflects sample’s 
inhomogeneity and can be correlated to concentration profiles of water or externally 
applied substances, depending on measurement protocol, excitation and detection 
wavelengths. However, due to the severely ill pose of the inverse calculation2, the 
analysis of OTTER data is limited and scanty. 

In this work, we investigate a new multilayered mathematical model and an inverse 
algorithm based on Genetic Algorithm, to extract the depth profile of optical absorption 
coefficient. A good agreement of the simulated and measured data indicates the 
acceptability of the model and the algorithm. 

  

2. Multilayered Mathematical Modelling 

In OTTER measurement, a pulsed laser is used as the excitation source to heat up the 
sample, and a fast infrared detector as a sensor to pick up the consequent changes of the 
thermal radiation due to this temperature increase in the sample near surface. A 
schematic diagram of an OTTER measurement is shown in Fig.1. The transient 
temperature field θ( , )z t can be expressed as3 
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where θ( , )z 0  is the initial temperature field, and )0,;, ( tzzG ′  is the Green function. The 
opto-thermal signal comes from the transient thermal emission, which can be calculated 
from 

 ∫
∞ −=

0

0 ),()( dztze
C

E
tS zθβ

ρ
ζ β  (2) 

where β  is the absorption coefficient for the emitted thermal radiation, C  the specific 

heat, ρ  the density, E0 the energy density absorbed from the excitation pulse, and the 
parameter ζ ζ λ= ( )em  includes factors that depend on the black body emission curve, 
detector sensitivity, focusing and alignment, but is independent of the properties of the 
sample per se.  

In the simplest case of a homogeneous, semi-infinite sample, the initial temperature 
field and the signal can be expressed respectively as 
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where α  is the absorption coefficient for the excitation radiation, and D  is the thermal 
diffusivity. 

Whereas a lot of practical samples are not ideal enough to be treated as homogeneous, 
the new model discussed here is for samples with homogeneous thermal properties but 
with inhomogeneous optical properties. The sample is divided into N  layers, which are 
perfectly connected with each other. Assume the absorption coefficient for excitation 
radiation of the sample is constant, but each layer of the sample has an absorption 
coefficient iβ  for the emitted radiation, and a thickness of iL . Then the signal turns to 
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where 
D2

1
ατ α = . 

In the following algorithm, all the calculations are based on the based on the above 
model, normalized to its initial value ( ) ( )( )0StS . 

 

3. Inverse Algorithm 

With N  dimension vector mS
�
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measurement signal data and calculated data, the OTTER inverse problem can be 
described as an optimisation problem Eq. (6), and in terms of property continuity of 
practical biomedical sample, it is a constraint optimisation problem. 
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where, ⋅  denotes the Euclidean distance, and βC  is the constant to keep the property 

continuity of sample. 

Compare with other inverse algorithms4, Genetic Algorithm (GA) can search complex 
and large state-spaces more efficiently, locate near optimal solutions more rapidly and 
allow additional constraints to be easily specified5. Due to the flexibility and versatility 
of GA in solving optimisation problems, GA is applied in this work. GAs are relatively 
new combinatorial search techniques based on mechanics of natural selection and 
natural genetics, which combines artificial survival of the fittest concept with genetic 
operations abstracted from nature. The basic structure of a GA is shown in Fig.2. First, 
an initial population of chromosomes for the GA is generated, usually in a random way. 
Then, the value of a function called fitness function is evaluated for each chromosome 



of the population. After this, the genetic operators reproduction, crossover and mutation 
are used in succession, to create a new population of chromosomes for the next 
generation. The process of evaluation and creation of new successive generation is 
repeated until the satisfaction of a convenient termination condition. 

Conventionally, most applications of GA to constraint optimisation problems have used 
the penalty function approach of handling constraints6. However, the penalty function 
approach involves a number of penalty parameters that must be set right in any problem 
to obtain feasible solutions. Different from the conventional methods, K. Deb7 
developed an efficient constraint handling method for GA based on the penalty function 
approach which does not require any penalty parameter. According to his fitness 
function, infeasible solutions are compared based on only their constraint violation. 
Here a binary GA is designed using K. Deb’s method but with a few modifications. The 
fitness function is devised as following: 

 ( )
( )









−−+

−=∀<−−
=

∑
−

=
+

+

1

1
1

1

2
1,,2,1

N

i
ii

iicm

otherwiseCN

NiCifSS
F

ββ

βββ
β

β

β �
���

�
 (7) 

where  denotes the absolute value of the operand, if the operand is negative and 

returns a value zero, otherwise. And other GA parameters are defined as: population 
size = N10 , maximum no. of generations = 100, generation gap = 0.9, and crossover 
probability = 0.7. 

 

4. Results and Discussions 

A. Simulation results 

With constant thermal diffusivity and the absorption coefficient for the excitation 
radiation, one group of simulated data, calculated (with 5% white noise added) from one 
constant absorption coefficient ( 5109.1 × ) profile for the emitted thermal radiation of a 
ten layered model using Eq.(5), were used to test the new inverse algorithm. The sample 
is assumed to be divided equally with 1 µm length of each layer. The results in Fig.3 
show obviously that the calculated data fit simulation signal data perfectly, and the 
calculated optical depth profile of β  is relatively constant, which indicates the new 
algorithm is efficient for the constraint handling. 

B. Measurement results 

The measurements were performed at different skin sites on a conventional OTTER 
apparatus with a Q-switched ER:YAG laser (2.94 µm) and 13.1µm detection 
wavelength, and β  gives information about hydration. The results are shown as Fig.4. 
In general, the skin of the forearm has more water and a higher hydration gradient than 
other sites, while nail has the least water and lowest hydration gradient than other sites. 
In all sites, the sky is dry outside and wet inside, which produces a positive gradient of 



β . These results agree with the depth profiles obtained using Segmented Least-Squares 
fitting method8. 

 

5. Conclusion 

We developed a new multi-layer mathematical model and an opto-thermal inverse depth 
profiling technique using a modified GA. Both the simulation results and the 
measurement results agree well with the given signal data, which shows that the new 
scheme developed is promising and effective to solve opto-thermal inverse problems. 
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Fig. 1. Schematic diagram of OTTER measurement 

procedure GA 
begin 
 gen=0 

Initialize Pop(gen) 
Evaluate Pop(gen) 
repeat 
 gen=gen+1 
 Select Pop(gen) from Pop(gen-1) 
 Crossover Pop(gen) 
 Mutate Pop(gen) 
 Evaluate Pop(gen) 
 Pop(gen-1)= Pop(gen) 
until (TerminationCondition) 

end 
 

 
Fig. 2. The basic structure of a genetic algorithm 



 

 
 
 
 
 
 
 
 
 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time /ms

S
ig

na
l/

 a
.u

.

Calculated result

Simulation data

 

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

������� �

���
-1

 

Fig. 3. Results for simulation data 
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Fig. 4. Optical depth profiles of different skin sites. 

(A) nail  (B) palm  (C) forearm 


